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The Mukaiyama aldol reaction of 2-aryl-1-cyclohexene-1-carboxaldehydes with phenyl trimethylsilyl
ketene acetal unexpectedly resulted in the formation of 9-substituted-1,2,3,4-tetrahydrofluorene deriv-
atives via a novel intramolecular titanium-promoted deoxygenative cyclization. By successive treatment
of the corresponding allyl alcohols with n-butyllithium and titanium tetrachloride, the cyclization prod-
ucts were obtained in good yields.

� 2009 Elsevier Ltd. All rights reserved.
Tetrahydrofluorenes are ideal tricyclic precursors for the syn-
thesis of gibberellin A diterpenoid1 and are also recognized to be
effective ligands for metallocenes.2 However, direct synthetic
routes to the substituted tetrahydrofluorenes have been limited.3

We have recently reported the first asymmetric synthesis of anes-
thetic (S)-ketamine through 1,3-chirality transfer from an optically
pure (S)-alcohol, prepared by enantioselective reduction with (S)-
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).
BINAL-H.4 An alternative synthesis introducing the chirality to
the corresponding (S)-alcohol by C–C bond formation has been
examined using the chiral oxazaborolidinone-promoted enantiose-
lective aldol reaction.5 The reaction of 2-(o-chlorophenyl)-1-cyclo-
hexene-1-carboxaldehyde (1)6 with phenyl trimethylsilyl ketene
acetal (2) gave the (S)-aldol product 3 in high enantioselectivity
(Eq. 1 in Scheme 1).7 During the process of determining the enanti-
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1.
oselectivity of the aldol reaction, the preparation of racemic 3 led
to an unexpected reaction (Eq. 2 in Scheme 1), that is, an unknown
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intramolecular cyclization was induced in the Mukaiyama aldol
reaction. We disclose herein a novel titanium-promoted deoxyge-
native cyclization.

The Mukaiyama aldol reaction of 1 with 2 in the presence of
stoichiometric titanium tetrachloride resulted in the formation of
a large amount of an unknown compound.8 The structure of the
compound was elucidated to be 9-substituted-1,2,3,4-tetrahydro-
fluorene 5, supported by comparison with the spectral data of
the unsubstituted tetrahydrofluorenes.9 The reaction of aldehyde
4 without the ortho-chloro substituent also smoothly produced
the cyclization product 6 in an 85% yield. The cyclization is consid-
ered to have taken place via a titanium aldolate intermediate in the
reaction. Apparently, the cyclization requires an unavoidable ap-
proach between the hydroxyl carbon moiety and the aryl ortho po-
sition, arisen from the Z-geometry in the titanium aldolate
intermediate. If the intermediate is formed by a different method,
the cyclization may be realized. Then, we envisaged generating the
key intermediate by treating racemic 3 with n-butyllithium and
titanium tetrachloride (Scheme 2). The sequence was expected to
form lithium alkoxide A, followed by the metal exchange reaction
to afford titanium alkoxide (or the corresponding ate complex) B. A
CH2Cl2 solution of 3 was stirred with 1 mol equiv of n-butyllithium
at �78 �C (low temperature was used to prevent a retro-aldol reac-
tion), followed by the addition of one equiv of titanium tetrachlo-
ride. The reaction mixture was allowed to warm to room
temperature and stirred for 30 min. The expected 5 was obtained
in a 68% yield. The reaction using the aldol 7 without the ortho-
chloro substituent also resulted in the formation of the corre-
sponding product 6 (71% yield), so the ortho-chloro substituent is
not essential for the cyclization.
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Scheme 3. A plausible SEAr mechanism of the intramole
From a mechanistic viewpoint, an effective deoxgenative pro-
cess occurs during the cyclization. The deoxygenative coupling of
titanium alkoxides, derived from allyl and benzyl alcohols, has
been reported only under radical conditions10, but that is not what
was shown in our case. A plausible electrophilic aromatic substitu-
tion (SEAr) mechanism is conceivable for the deoxygenative cycli-
zation, as shown in Scheme 3. Here, the titanium aldolate
intermediate X is converted to allyl cationic species Y and then
to Z by being assisted with steric demands.

On the basis of the cyclization method (Scheme 2), we tried cyc-
lizing allylic alcohols by the successive treatment with n-butyllith-
ium and titanium tetrachloride. The results are summarized in
Table 1. The reaction of primary allyl alcohol 8 at 0 �C gave
complex mixtures but the reaction at �78 �C gave the correspond-
ing chloride 11 in a moderate yield (entries 1 and 2). The chloride is
presumably to have been obtained via an intramolecular chloride
transfer from the titanium alkoxide intermediate.11 Steric restric-
tion allowing the efficient interaction between the aryl ortho and
the hydroxyl moieties is required for the cyclization. Actually,
the secondary alcohol 9 underwent the cyclization to product 12,
in which the double bond was migrated, at 0 �C (entry 3). The reac-
tion at �78 �C gave the normal cyclization product 13 in an excel-
lent yield (entry 4). The yield was high for tertiary alcohol 10,
probably reflecting the formation of the stable tertiary allyl cation
intermediate so as to give product 14 (entry 5).

In summary, 2-aryl-1-cyclohexene-1-carboxaldehydes under-
went an intramolecular titanium-promoted deoxygenative cycliza-
tion reaction to give 9-substituted-1,2,3,4-tetrahydrofluorenes.
The reaction seems to have proceeded via allyl cations, followed
by an intramolecular SEAr cyclization. A novel route to such tetra-
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Table 1
The intramolecular titanium-promoted deoxygenative cyclization reaction starting
with alcoholsa

Entry Alcohols Reaction
temperature (�C)

Product (% yield)

1
OH

8 0 Complex mixtures

2
OH

8 �78

Cl
(57)11

3
OH

9 0 (68)12

4
OH

9 �78 (89)13

5
OH

10 0 (95)14

a Typical procedure is described in Ref. 12.
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hydrofluorenes has been developed by successive treatment of sec-
ondary and tertiary allyl alcohols with n-butyllithium and titanium
tetrachloride. An expanded study on the scope and limitations of
the intramolecular titanium-promoted deoxygenative cyclization
is currently underway.
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